Alguns segredos matemáticos
A matemática pode ser aterrorizante para muitas pessoas. Esta lista pode melhorar seu conhecimento geral de técnicas matemáticas e acelerar a execução de cálculos matemáticos em sua mente.
1. Multiplicação por 11
Todos sabemos que, quando multiplicado por 10, 0 é adicionado ao número, mas você sabia que existe uma maneira igualmente simples de multiplicar um número de dois dígitos por 11? Aqui está:
Pegue o número original e imagine a diferença entre os dois caracteres (neste exemplo, usamos o número 52):
5_2
Agora some os dois números e escreva-os no meio:
5_ (5 + 2) _2
Portanto, sua resposta é: 572.
Se você adicionar um número de dois dígitos ao adicionar números entre colchetes, lembre-se do segundo dígito e adicione um ao primeiro número:
9_ (9 + 9) _9
(9 + 1) _8_9
10_8_9
1089 - Isso sempre funciona.
2. Esquadria rápida
Essa técnica ajudará você a quadrilhar rapidamente um número de dois dígitos que termina com 5. Multiplique o primeiro dígito por si mesmo +1 e adicione 25 no final.
252 = (2x (2 + 1)) e 25
2 x 3 = 6
625
3. Multiplicação por 5
A maioria das pessoas se lembra da tabuada de multiplicação por 5, mas quando você precisa lidar com grandes números, isso se torna mais difícil ou não? Esse truque é incrivelmente simples.
Pegue qualquer número, divida por 2 (em outras palavras, divida ao meio). Se o resultado for um número inteiro, escreva 0 no final. Caso contrário, ignore a vírgula e adicione 5. Finalmente, isso sempre funciona:
2682 x 5 = (2682/2) & 5 ou 0
2682/2 = 1341 (inteiro, então adicione 0)
13410
Vamos tentar outro exemplo:
5887 x 5
2943,5 (número fracionário (pule a vírgula, adicione 5)
29435
4. Multiplicação por 9
É simples Para multiplicar qualquer número de 1 a 9 por 9, observe as mãos. Dobre o dedo que corresponde ao número multiplicado (por exemplo, 9x3 - dobre o terceiro dedo), conte os dedos até o dedo dobrado (no caso de 9x3 - 2) e depois conte depois do dedo dobrado (no nosso caso - 7). A resposta é 27.
5. Multiplicação por 4
Este é um truque muito simples, embora óbvio apenas para alguns. O truque é que você só precisa multiplicar por 2 e, em seguida, multiplicar novamente por 2:
58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232
6. Cálculo da ponta
Se você precisar deixar 15% da gorjeta, existe uma maneira fácil de fazer isso. Calcule 10% (divida o número por 10) e adicione o número resultante à metade e obtenha a resposta:
15% de $ 25 = (10% de 25) + ((10% de 25) / 2)
$ 2,50 + $ 1,25 = $ 3,75
7. Multiplicação Complexa
Se você precisar multiplicar números grandes, e um deles for par, basta reorganizá-los para obter a resposta:
32 x 125 de qualquer maneira, que:
16 x 250 de qualquer maneira, que:
8 x 500 de qualquer maneira, que:
4 x 1000 = 4.000
8. Divisão por 5
Na verdade, dividir grandes números por 5 é muito simples. Tudo o que você precisa fazer é multiplicar por 2 e mover a vírgula:
195/5 Etapa 1: 195 * 2 = 390 Etapa
2: Transferir a vírgula: 39.0 ou apenas 39.
2978/5
Passo 1: 2978 * 2 = 5956
Passo 2: 595.6
9. Subtração de 1000
Para subtrair de 1000, você pode usar esta regra simples: Subtraia de 9 todos os números, exceto o último. E subtraia o último dígito de 10: 1000
-648
Etapa 1: subtraia de 9 = 6 = 3 Etapa
2: subtraia de 9 = 4 = 5
Etapa 3: subtraia de 10 = 8 = 2
Resposta: 352
10. Regras de multiplicação sistemática
- Multiplicação por 5: Multiplique por 10 e divida por 2.
- Multiplicação por 6: às vezes é mais fácil multiplicar por 3 e depois por 2.
- Multiplicação por 9: Multiplique por 10 e subtraia o número original.
- Multiplicação por 12: multiplique por 10 e adicione o número original duas vezes.
- Multiplicação por 13: multiplique por 3 e 10 vezes e adicione o número original.
- Multiplicação por 14: Multiplique por 7 e depois por 2.
- Multiplicação por 15: multiplique por 10 e 5 vezes e adicione o número original, como no exemplo anterior.
- Multiplicação por 16: se desejar, multiplique 4 vezes por 2. Ou multiplique por 8 e depois por 2.
- Multiplicação por 17: multiplique por 7 e 10 vezes e adicione o número original.
- Multiplicação por 18: multiplique por 20 e subtraia o número original duas vezes.
- Multiplicação por 19: multiplique por 20 e subtraia o número original.
- Multiplicação por 24: multiplique por 8 e depois por 3.
- Multiplicação por 27: multiplique por 30 e 3 vezes subtraia o número original.
- Multiplicação por 45: multiplique por 50 e 5 vezes subtraia o número original.
- Multiplicação por 90: Multiplique por 9 e atribua 0.
- Multiplicação por 98: multiplique por 100 e subtraia o número original duas vezes.
- Multiplicação por 99: multiplique por 100 e subtraia o número original.
Bônus: Juros
Yanni no 23º comentário deu excelentes conselhos sobre como calcular juros. Então tomei a liberdade de repeti-lo aqui:
Calcular 7% de 300. Parece complicado?
Interesse : primeiro você precisa entender o significado da palavra "Porcentagem" (Porcentagem). A primeira parte da palavra é PRO (PER), com 10 pontos por página na lista inversa. PER = PARA TODOS. A segunda parte é CENT, como 100. Por exemplo, Centenário = 100 anos. 100 cêntimos em 1 dólar e assim por diante. Então, PERCENT = PARA CADA CEM.
Assim, verifica-se que 7% de 100 será 7. (7 para cada cem, apenas cem).
8% de 100 = 8.
35,73% de 100 = 35,73
Mas como isso pode ser útil?
Voltemos ao problema 7% de 300. 7% dos
primeiros cem são 7. 7%, dos segundos cem - os mesmos 7 e 7% dos terceiros cem - todos iguais 7. Portanto, 7 + 7 + 7 = 21. Se 8% de 100 = 8, depois 8% de 50 = 4 (metade de 8).
Divida cada número, se você precisar calcular porcentagens de 100, se o número for menor que 100, mova a vírgula para a esquerda.
EXEMPLOS :
8% 200 =? 8 + 8 = 16,8
% 250 =? 8 + 8 + 4 = 20,
8% 25 = 2,0 (Mova a vírgula para a esquerda).
15% 300 = 15 + 15 + 15 = 45,
15% 350 = 15 + 15 + 15 + 7,5 = 52,5
Também é útil saber que você sempre pode trocar números: 3% de 100 é o mesmo que 100% de 3. 35% de 8 é o mesmo que 8% de 35.